Part Number Hot Search : 
AFK1220 X1240V8I CM3602 212EH BF998 G530158 L7812CT AKD439
Product Description
Full Text Search
 

To Download MC74VHC1G54-D Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
    semiconductor technical data order this document by mc74vhc1g54/d 1 rev 0 ? motorola, inc. 1998 10/98 
      the mc74vhc1g54 is an advanced high speed cmos multiplexer demultiplexer analog switch fabricated with silicon gate cmos technology. it achieves high speed propagation delays and low on resistances while maintaining cmos low power dissipation. this multiplexer demultiplexer controls analog and digital voltages that may vary across the full powersupply range (from v cc to gnd). the device has been designed so that the on resistances (r on ) are much lower and more linear over input voltage than r on of the typical metalgate cmos or high speed cmos analog switches. the on/off control inputs are compatible with standard cmos outputs; with pullup resistors, it is compatible with lsttl outputs. ? fast switching and propagation speeds ? low power dissipation: i cc = 2  a (max) at t a = 25 c ? diode protection provided on channel select input ? improved linearity and lower on resistance over input voltage ? latchup performance exceeds 300 ma ? esd performance: hbm > 2000 v; mm > 200 v, cdm > 1500 v in/out x 1 channel select pin assignment 6 1 2 3 5 4 out/in x in/out x 0 gnd v cc u u out/in x logic symbol channel select 2 x 0 2 x 1 in/out x 0 u in/out x 1 device ordering information di od n b device nomenclature pk tdrl device order number motorola circuit indicator temp range identifier technology device function package suffix tape and reel suffix package type tape and reel size mc74vhc1g54dtt1 mc 74 vhc1g 54 dt t1 tsop6 7inch/3000 unit mc74vhc1g54dtt3 mc 74 vhc1g 54 dt t3 tsop6 13inch/ 10000 unit this document contains information on a product under development. motorola reserves the right to change or discontinue this product without notice.  
 planned package 6lead tssop t amb = 55 c to 125 c function table l h select x 0 x 1 on channel marking diagram d = date code v v d pin 1
mc74vhc1g54 motorola vhc data advanced cmos logic dl203 e rev 1 2 absolute maximum ratings maximum ratings are those values beyond which damage to the device may occur. exposure to these conditions or condi- tions beyond those indicated may adversely affect device reliability. functional operation under absolutemaximumrated conditions is not implied. functional operation should be restricted to the recommended operating conditions. characteristics symbol value unit dc supply voltage v cc 0.5 to +7.0 v digital input voltage v in 0.5 to v cc +0.5 v analog input voltage v is 0.5 to v cc + 0.5 v digital input diode current i ik 20 ma dc supply current, v cc and gnd i cc 25 ma power dissipation in still air, tsop6 2 p d 450 mw lead temperature, 1 mm from case for 10 s t l 260 c storage temperature t stg 65 to +150 c 2power dissipation derating: tsop6 package: 6 mw/  c from 65  c to 125  c recommended operating conditions characteristics symbol min max unit dc supply voltage v cc 2.0 5.5 v digital input voltage v in gnd v cc v analog input voltage v is gnd v cc v static or dynamic voltage across switch v io * e 100 mv operating temperature range t a 55 +125 c input rise and fall time, select & enable v cc = 3.3 v 0.3 v v cc = 5.0 v 0.5 v t r , t f 0 0 100 20 ns/v * for voltage drops across the switch greater than 100 mv (switch on), excessive v cc current may be drawn; i.e. the current out of the switch may contain both v cc and switch input components. the reliability of the device will be unaffected unless the maximum ratings are exceeded.
mc74vhc1g54 vhc data advanced cmos logic dl203 e rev 1 3 motorola dc electrical characteristics v cc t a = 25 c t a 85 c t a 125 c symbol parameter test conditions (v) min typ max min max min max unit v ih minimum highlevel input voltage channel select input r on = per spec 2.0 3.0 4.5 5.5 1.5 2.1 3.15 3.85 1.5 2.1 3.15 3.85 1.5 2.1 3.15 3.85 v v il maximum lowlevel input voltage channel select input r on = per spec 2.0 3.0 4.5 5.5 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 v i in maximum input leakage current channel select input v in = v cc or gnd 0 to 5.5 0.1 1.0 1.0 m a i cc maximum quiescent supply current v in = v cc or gnd v io = 0 v 5.5 2.0 20 40 m a r on maximum aono resistance v in = v ih v is = v cc to gnd i is 20 ma (figure 1) 2.0 3.0 4.5 25 12 5 50 20 10 70 30 15 100 45 25  endpoints v in = v ih v is = v cc to gnd i is 20 ma (figure 1) 2.0 3.0 4.5 25 12 5 50 20 10 65 26 13 90 40 22  i off maximum offchannel leakage current, any one channel v in = v il v io = v cc to gnd switch off (figure 2) 4.5 5.5 0.1 0.5 5.0 10 10 20 na maximum offchannel leakage current, common channel v in = v il v io = v cc to gnd switch off (figure 3) 4.5 5.5 0.1 0.5 5.0 10 10 20 na i on maximum onchannel leakage current v in = v ih v is = v cc to gnd (figure 4) 4.5 5.5 0.2 1.0 10 20 20 40 na ????????????????????????????????? injection current coupling specifications (v cc = 5.0 v, t a = 25 c) ????? ????? symbol ??????????? ??????????? parameter ??????????? ??????????? test conditions ???? ???? typ ???? ???? max ??? ??? unit ????? ? ??? ? ????? v d out ??????????? ? ????????? ? ??????????? maximum shift of output voltage of enabled analog channel (figure 7) ??????????? ? ????????? ? ??????????? i in 10 ma, r s 10 k w c l = 1000 pf ???? ? ?? ? ???? 1.0 ???? ? ?? ? ???? 5.0 ??? ? ?? ??? mv 1. i in = total current injected into disabled channel. to express injection current coupling in terms of charge: q = v d out  c l where q is in pc, v d out is in v and c l is in pf.
mc74vhc1g54 motorola vhc data advanced cmos logic dl203 e rev 1 4 ????????????????????????????????? ????????????????????????????????? ac electrical characteristics (c load = 50 pf, input t r /t f = 3.0 ns) ???? ???? sbl ??????? ??????? p ??????? ??????? t c di i ??? ??? v cc ??????? ??????? t a = 25 c ????? ????? t a 85 c ????? ????? t a 125 c ?? ?? ui ???? ???? symbol ??????? ??????? parameter ??????? ??????? test conditions ??? ??? v cc (v) ??? ??? min ??? ??? typ ??? ??? max ??? ??? min ??? ??? max ??? ??? min ??? ??? max ?? ?? unit ???? ? ?? ? ? ?? ? ???? t plh , t phl ??????? ? ????? ? ? ????? ? ??????? maximum propagation delay, input x to x 0 or x 1 ??????? ? ????? ? ? ????? ? ??????? figure 5 ??? ? ? ? ? ? ? ??? 2.0 3.0 4.5 5.5 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 1 0 0 0 ??? ? ? ? ? ? ? ??? 5 2 1 1 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 6 3 1 1 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 7 4 2 1 ?? ?? ?? ?? ns ???? ? ?? ? ? ?? ? ???? t plh , t phl ??????? ? ????? ? ? ????? ? ??????? maximum propagation delay, select to analog output ??????? ? ????? ? ? ????? ? ??????? figure 6 ??? ? ? ? ? ? ? ??? 2.0 3.0 4.5 5.5 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 15 8 6 4 ??? ? ? ? ? ? ? ??? 35 15 10 7 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 46 20 13 9 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 57 25 17 11 ?? ?? ?? ?? ns ???? ???? c in ??????? ??????? maximum input capacitance ??????? ??????? channel select input ??? ??? 0.0 ??? ??? ??? ??? 3 ??? ??? 10 ??? ??? ??? ??? 10 ??? ??? ??? ??? 10 ?? ?? pf ???? ? ?? ? ? ?? ? ???? ??????? ? ????? ? ? ????? ? ??????? capacitance ??????? ? ????? ? ? ????? ? ??????? analog i/o common o/i feedthrough channel select = gnd ??? ? ? ? ? ? ? ??? 5.0 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 8 8 20 ??? ? ? ? ? ? ? ??? 15 15 50 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 20 20 50 ??? ? ? ? ? ? ? ??? ??? ? ? ? ? ? ? ??? 20 20 50 ?? ?? ?? ?? c p di i i c i ( s i h) (n 1) fi 8 typical @ 25 c, v cc = 5.0 v f c pd power dissipation capacitance (per switch) (note 1) figure 8 18 pf 1. c pd is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. average operating current can be obtained by the equation: i cc(opr ) = c pd  v cc  f in + i cc . c pd is used to determine the noload dynamic power consumption; p d = c pd  v cc 2  f in + i cc  v cc . ????????????????????????????????? ????????????????????????????????? additional application characteristics (voltages referenced to gnd unless noted) ???? ? ?? ? ???? symbol ?????????? ? ???????? ? ?????????? parameter ?????????????? ? ???????????? ? ?????????????? test conditions ??? ? ? ? ??? v cc ???? ? ?? ? ???? limit  25 c ??? ? ? ? ??? unit ???? ? ?? ? ? ?? ? ???? bw ?????????? ? ???????? ? ? ???????? ? ?????????? maximum onchannel bandwidth or minimum frequency response figure 9 ?????????????? ? ???????????? ? ? ???????????? ? ?????????????? f in = 1 mhz sine wave adjust f in voltage to obtain 0 dbm at v os increase f in = frequency until db meter reads 3 db r l = 50  , c l = 10 pf ??? ? ? ? ? ? ? ??? 3.0 4.5 5.5 ???? ? ?? ? ? ?? ? ???? 150 175 200 ??? ? ? ? ? ? ? ??? mhz ???? ? ?? ? ???? iso off ?????????? ? ???????? ? ?????????? offchannel feedthrough isolation figure 10 ?????????????? ? ???????????? ? ?????????????? f in = sine wave adjust f in voltage to obtain 0 dbm at v is f in = 10 khz, r l = 600  , c l = 50 pf ??? ? ? ? ??? 3.0 4.5 5.5 ???? ? ?? ? ???? 90 90 90 ??? ? ? ? ??? db ???? ? ?? ? ???? ?????????? ? ???????? ? ?????????? ?????????????? ? ???????????? ? ?????????????? f in = 1.0 mhz, r l = 50  , c l = 10 pf ??? ? ? ? ??? 3.0 4.5 5.5 ???? ? ?? ? ???? 80 80 80 ??? ? ? ? ??? ???? ? ?? ? ? ?? ? ???? noise feed ?????????? ? ???????? ? ? ???????? ? ?????????? feedthrough noise channel select to switch figure 11 ?????????????? ? ???????????? ? ? ???????????? ? ?????????????? v in 1 mhz square wave (t r = t f = 2 ns) adjust r l at setup so that i s = 0 a r l = 600  , c l = 50 pf ??? ? ? ? ? ? ? ??? 3.0 4.5 5.5 ???? ? ?? ? ? ?? ? ???? 45 60 100 ??? ? ? ? ? ? ? ??? mv pp ???? ? ?? ? ???? ?????????? ? ???????? ? ?????????? ?????????????? ? ???????????? ? ?????????????? r l = 50  , c l = 10 pf ??? ? ? ? ??? 3.0 4.5 5.5 ???? ? ?? ? ???? 25 30 60 ??? ? ? ? ??? ???? ? ?? ? ? ?? ? ? ?? ? ???? thd ?????????? ? ???????? ? ? ???????? ? ? ???????? ? ?????????? total harmonic distortion figure 12 ?????????????? ? ???????????? ? ? ???????????? ? ? ???????????? ? ?????????????? f in = 1 khz, r l = 10 k  , c l = 50 pf thd = thd measured thd source v is = 3.0 v pp sine wave v is = 4.0 v pp sine wave v is = 5.0 v pp sine wave ??? ? ? ? ? ? ? ? ? ? ??? 3.3 4.5 5.5 ???? ? ?? ? ? ?? ? ? ?? ? ???? 0.20 0.10 0.06 ??? ? ? ? ? ? ? ? ? ? ??? % 2 guaranteed limits not tested. determined by design and verified by qualification.
mc74vhc1g54 vhc data advanced cmos logic dl203 e rev 1 5 motorola figure 1. on resistance test setup figure 2. maximum offchannel leakage current test setup, any one channel figure 3. maximum offchannel leakage current test setup, common channel figure 4. maximum onchannel leakage current test setup figure 5. propagation delay test setup, analog i/o to analog i/o figure 6. propagation delay test setup, channel select to analog i/o power supply computer dc parameter analyzer v cc + plotter v ih a v cc v cc a v cc v cc v cc v cc v cc 6 1 2 3 5 4 6 1 2 3 5 4 6 1 2 3 5 4 6 1 2 3 5 4 6 1 2 3 5 4 6 1 2 3 5 4 v cc n/c v cc v cc v cc a v cc test point c l test point c l v cc 2 1 2 1
mc74vhc1g54 motorola vhc data advanced cmos logic dl203 e rev 1 6 figure 7. injection current coupling test setup figure 8. power dissipation capacitance test setup figure 9. maximum onchannel bandwidth test setup figure 10. offchannel feedthrough isolation test setup figure 11. feedthrough noise, channel select to analog out, test setup figure 12. total harmonic distortion test setup gnd v cc v in  1mhz t r  t f  2ns v cc *includes all probe and jig capacitance. *includes all probe and jig capacitance. 0.1  f f in v cc a *includes all probe and jig capacitance. r l 6 1 2 3 5 4 6 1 2 3 5 4 6 1 2 3 5 4 v cc n/c 6 1 2 3 5 4 v cc test point c l * v cc i in a r s r s 2 1 2 1 2 1 v cc db meter v os c l * v cc *includes all probe and jig capacitance. 6 1 2 3 5 4 v cc db meter v os c l * r l 0.1  f f in v is v cc r l r l c l * v cc *includes all probe and jig capacitance. 6 1 2 3 5 4 v cc v os c l * r l 0.1  f f in v is to distortion meter r l test point
mc74vhc1g54 vhc data advanced cmos logic dl203 e rev 1 7 motorola information for using the tsop6 surface mount package minimum recommended footprint for surface mounted applications surface mount board layout is a critical portion of the total design. the footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. with the correct pad geometry, the packages will self align when subjected to a solder reflow process. mm inches 1.9 0.039 1.0 0.094 0.7 0.074 2.4 0.028 0.95 0.037 0.95 0.037 tsop6 tsop6 power dissipation the power dissipation of the tsop6 is a function of the drain pad size. this can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. power dissipation for a surface mount device is determined by t j(max) , the maximum rated junction temperature of the die, r q ja , the thermal resistance from the device junction to ambient, and the operating temperature, t a . using the values provided on the data sheet for the tsop6 package, p d can be calculated as follows: p d = t j(max) t a r q ja the values for the equation are found in the maximum ratings table on the data sheet. substituting these values into the equation for an ambient temperature t a of 25 c, one can calculate the power dissipation of the device which in this case is 450 milliwatts. p d = 125 c 25 c 225 c/w = 450 milliwatts the 225 c/w for the tsop6 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 450 milliwatts. there are other alternatives to achieving higher power dissipation from the tsop6 package. another alternative would be to use a ceramic substrate or an aluminum core board such as thermal clad ? . using a board material such as thermal clad, an aluminum core board, the power dissipation can be doubled using the same footprint. soldering precautions the melting temperature of solder is higher than the rated temperature of the device. when the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. ? always preheat the device. ? the delta temperature between the preheat and soldering should be 100 c or less.* ? when preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. when using infrared heating with the reflow soldering method, the difference shall be a maximum of 10 c. ? the soldering temperature and time shall not exceed 260 c for more than 10 seconds. ? when shifting from preheating to soldering, the maximum temperature gradient shall be 5 c or less. ? after soldering has been completed, the device should be allowed to cool naturally for at least three minutes. gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. ? mechanical stress or shock should not be applied during cooling. * soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.
mc74vhc1g54 motorola vhc data advanced cmos logic dl203 e rev 1 8 tsop6 tape and reel options package orientation d e f c a l t w b aa aa ? k ? j ? p h ? n k quantity per reel g  l section aa v device mgsf34xxxt1 mgsf34xxxt3 reel size quantity 3,000 10,000 7inches 13inches m di t1 t3 di millimeters inches millimeters inches dim min max min max min max min max a 7.70 8.30 0.303 0.327 7.70 8.30 0.303 0.327 b 1.65 1.85 0.065 0.073 1.65 1.85 0.065 0.073 c 3.10 3.30 0.122 0.130 3.10 3.30 0.122 0.130 d 3.05 3.25 0.120 0.128 3.05 3.25 0.120 0.128 e 3.90 4.10 0.154 0.161 3.90 4.10 0.154 0.161 f 3.90 4.10 0.154 0.161 3.90 4.10 0.154 0.161 g 3.10 3.30 0.122 0.130 3.10 3.30 0.122 0.130 h 0.17 0.23 0.007 0.009 0.17 0.23 0.007 0.009 ? j 1.50 1.60 0.059 0.063 1.50 1.60 0.059 0.063 k 1.30 1.50 0.051 0.059 1.30 1.50 0.051 0.059 ? k 1.00 1.10 0.039 0.043 1.00 1.10 0.039 0.043 l 170 180 6.929 7.087 328 332 12.91 13.07  l e 3 e 3 e 3 e 3 m 1.50 2.50 0.059 0.098 1.50 2.50 0.059 0.098 ? n 12.8 13.2 0.504 0.520 12.8 13.2 0.504 0.520 ? p 21.5 22.5 0.846 0.886 21.5 22.5 0.847 0.886 t 1.00 2.00 0.039 0.078 1.00 2.00 0.039 0.078 v 53.0 54.0 2.087 2.126 53.0 54.0 2.087 2.126 w 7.90 8.90 0.311 0.350 24.4 16.4 0.961 1.039
mc74vhc1g54 vhc data advanced cmos logic dl203 e rev 1 9 motorola outline dimensions planned package 6lead tssop t amb = 55 c to 125 c 23 4 5 6 a l 1 s g d b h c 0.05 (0.002) dim min max min max inches millimeters a 0.1142 0.1220 2.90 3.10 b 0.0512 0.0669 1.30 1.70 c 0.0354 0.0433 0.90 1.10 d 0.0098 0.0197 0.25 0.50 g 0.0335 0.0413 0.85 1.05 h 0.0005 0.0040 0.013 0.100 j 0.0040 0.0102 0.10 0.26 k 0.0079 0.0236 0.20 0.60 l 0.0493 0.0610 1.25 1.55 m 0 10 0 10 s 0.0985 0.1181 2.50 3.00  notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. 3. maximum lead thickness includes lead finish thickness. minimum lead thickness is the minimum thickness of base material. m j k motorola reserves the right to make changes without further notice to any products herein. motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. atypicalo parameters which may be provided in motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. motorola does not convey any license under its patent rights nor the rights of others. motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the motorola product could create a situation where personal injury or death may occur. should buyer purchase or use motorola products for any such unintended or unauthorized application, buyer shall indemnify and hold motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that motorola was negligent regarding the design or manufacture of the part. motorola and are registered trademarks of motorola, inc. motorola, inc. is an equal opportunity/affirmative action employer. mfax is a trademark of motorola, inc. how to reach us: usa / europe / locations not listed : motorola literature distribution; japan : nippon motorola ltd.; spd, strategic planning office, 141, p.o. box 5405, denver, colorado 80217. 13036752140 or 18004412447 4321 nishigotanda, shinagawaku, tokyo, japan. 81354878488 customer focus center: 18005216274 mfax ? : rmfax0@email.sps.mot.com touchtone 1 6022446609 asia / pacific : motorola semiconductors h.k. ltd.; 8b tai ping industrial park, motorola fax back system us & canada only 18007741848 51 ting kok road, tai po, n.t., hong kong. 85226629298 http://sps.motorola.com/mfax/ home page : http://motorola.com/sps/ mc74vhc1g54/d ?


▲Up To Search▲   

 
Price & Availability of MC74VHC1G54-D

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X